Peramalan dengan Teknik Smoothing Situs ini adalah bagian dari objek pembelajaran JavaScript E-lab untuk pengambilan keputusan. JavaScript lain dalam seri ini dikategorikan dalam berbagai bidang aplikasi di bagian MENU di halaman ini. Seri waktu adalah urutan pengamatan yang dipesan tepat waktu. Inheren dalam pengumpulan data yang diambil dari waktu ke waktu adalah beberapa bentuk variasi acak. Ada metode untuk mengurangi pembatalan efek karena variasi acak. Teknik yang banyak digunakan adalah smoothing. Teknik-teknik ini, bila diterapkan dengan benar, menunjukkan lebih jelas tren dasarnya. Masukkan deret waktu Row-wise secara berurutan, mulai dari sudut kiri atas, dan parameternya, lalu klik tombol Hitung untuk mendapatkan peramalan satu periode di depan. Kotak kosong tidak termasuk dalam perhitungan tapi angka nol. Dalam memasukkan data Anda untuk berpindah dari sel ke sel di matriks data gunakan tombol Tab bukan panah atau masukkan kunci. Fitur deret waktu, yang mungkin terungkap dengan memeriksa grafiknya. Dengan nilai perkiraan, dan perilaku residual, pemodelan peramalan kondisi. Moving Averages: Moving averages rank antara teknik yang paling populer untuk preprocessing time series. Mereka digunakan untuk menyaring suara putih acak dari data, membuat rangkaian waktu lebih halus atau bahkan untuk menekankan komponen informasi tertentu yang terdapat dalam deret waktu. Exponential Smoothing: Ini adalah skema yang sangat populer untuk menghasilkan Time Series yang merapikan. Sedangkan dalam Moving Averages, pengamatan terakhir tertimbang secara merata, Exponential Smoothing memberikan bobot yang menurun secara eksponensial saat pengamatan bertambah tua. Dengan kata lain, observasi terakhir diberi bobot yang relatif lebih banyak dalam peramalan daripada pengamatan yang lebih tua. Double Exponential Smoothing lebih baik dalam menangani tren. Triple Exponential Smoothing lebih baik dalam menangani tren parabola. Rata-rata pergerakan tertimbang secara eksponensial dengan konstanta pemulusan a. Sesuai kira-kira dengan panjang rata-rata bergerak sederhana (yaitu periode) n, di mana a dan n dihubungkan oleh: a 2 (n1) ATAU n (2 - a) a. Jadi, misalnya, rata-rata bergerak tertimbang secara eksponensial dengan konstanta pemulusan sama dengan 0,1 akan sesuai kira-kira dengan rata-rata pergerakan 19 hari. Dan rata-rata pergerakan sederhana 40 hari akan sesuai kira-kira dengan rata-rata pergerakan tertimbang eksponensial dengan konstanta pemulusan sama dengan 0,04878. Holts Linear Exponential Smoothing: Misalkan deret waktunya tidak musiman namun memang menunjukkan tren. Metode Holts memperkirakan tingkat arus dan tren saat ini. Perhatikan bahwa rata-rata pergerakan sederhana adalah kasus khusus dari perataan eksponensial dengan menetapkan periode rata-rata bergerak ke bagian integer (Alpha 2). Untuk kebanyakan data bisnis, parameter Alpha yang lebih kecil dari 0,40 sering kali efektif. Namun, seseorang dapat melakukan pencarian grid dari ruang parameter, dengan 0,1 sampai 0,9, dengan penambahan 0,1. Kemudian alpha terbaik memiliki Mean Absolute Error terkecil (MA Error). Bagaimana membandingkan beberapa metode pemulusan: Meskipun ada indikator numerik untuk menilai keakuratan teknik peramalan, pendekatan yang paling banyak adalah menggunakan perbandingan visual beberapa perkiraan untuk menilai keakuratannya dan memilih di antara berbagai metode peramalan. Dalam pendekatan ini, seseorang harus merencanakan (menggunakan, misalnya Excel) pada grafik yang sama dengan nilai asli dari variabel deret waktu dan nilai prediksi dari beberapa metode peramalan yang berbeda, sehingga memudahkan perbandingan visual. Anda mungkin ingin menggunakan Prakiraan Masa Lalu oleh Teknik Smoothing JavaScript untuk mendapatkan perkiraan perkiraan masa lalu berdasarkan teknik pemulusan yang hanya menggunakan satu parameter tunggal. Metode Holt, dan Winters masing-masing menggunakan dua dan tiga parameter, oleh karena itu bukanlah tugas yang mudah untuk memilih nilai optimal, atau mendekati nilai optimal dengan trial and error untuk parameter. Pemulusan eksponensial tunggal menekankan perspektif jarak pendek yang menetapkan tingkat pada pengamatan terakhir dan didasarkan pada kondisi bahwa tidak ada kecenderungan. Regresi linier, yang sesuai dengan garis kuadrat terkecil terhadap data historis (atau data historis yang ditransformasikan), mewakili rentang panjang, yang dikondisikan pada tren dasarnya. Holts linear exponential smoothing menangkap informasi tentang tren terkini. Parameter dalam model Holts adalah level-parameter yang harus diturunkan bila jumlah variasi data besar, dan parameter tren harus ditingkatkan jika arah tren terkini didukung oleh faktor penyebab. Peramalan Jangka Pendek: Perhatikan bahwa setiap JavaScript di halaman ini memberikan perkiraan satu langkah di depan. Untuk mendapatkan ramalan dua langkah di depan. Cukup tambahkan nilai perkiraan ke akhir data deret waktu Anda lalu klik tombol Hitung yang sama. Anda dapat mengulangi proses ini beberapa kali untuk mendapatkan ramalan jangka pendek yang dibutuhkan. Eksplorasi Ekspektasi Eksperimental. Salin Hak Cipta Konten pada InventoryOps dilindungi hak cipta dan tidak tersedia untuk republikasi. Ketika orang pertama kali menemukan istilah Exponential Smoothing, mereka mungkin berpikir itu terdengar seperti neraka yang banyak merapikan. Apapun itu smoothing. Mereka kemudian mulai membayangkan perhitungan matematika yang rumit yang mungkin memerlukan gelar dalam matematika untuk memahami, dan berharap ada fungsi Excel bawaan yang tersedia jika mereka perlu melakukannya. Realitas pemulusan eksponensial jauh kurang dramatis dan jauh kurang traumatis. Yang benar adalah, eksponensial smoothing adalah perhitungan yang sangat sederhana yang menyelesaikan tugas yang agak sederhana. Ini hanya memiliki nama yang rumit karena secara teknis hal tersebut terjadi akibat perhitungan sederhana ini sebenarnya sedikit rumit. Untuk memahami pemulusan eksponensial, ada baiknya memulai dengan konsep umum perataan dan beberapa metode umum lainnya yang digunakan untuk mencapai perataan. Smoothing Smoothing adalah proses statistik yang sangat umum. Sebenarnya, kami secara teratur menemukan data merapikan dalam berbagai bentuk dalam kehidupan sehari-hari. Setiap kali Anda menggunakan rata-rata untuk menggambarkan sesuatu, Anda menggunakan nomor yang merapikan. Jika Anda memikirkan mengapa Anda menggunakan rata-rata untuk menggambarkan sesuatu, Anda akan segera memahami konsep perataan. Sebagai contoh, kita hanya mengalami musim dingin terpanas yang tercatat. Bagaimana kita bisa menghitung ini. Kita mulai dengan dataset suhu tinggi dan rendah harian untuk periode yang kita sebut Winter untuk setiap tahun dalam sejarah yang tercatat. Tapi itu membuat kita dengan seikat angka yang melompati sedikit (tidak seperti setiap hari musim dingin ini lebih hangat daripada hari-hari yang sama dari tahun-tahun sebelumnya). Kita membutuhkan nomor yang menghilangkan semua ini yang melompat dari data sehingga kita bisa lebih mudah membandingkan satu musim dingin ke musim berikutnya. Melepaskan lompatan di sekitar data disebut smoothing, dan dalam kasus ini kita bisa menggunakan rata-rata sederhana untuk menyelesaikan smoothing. Dalam peramalan permintaan, kita menggunakan smoothing untuk menghilangkan variasi acak (noise) dari permintaan historis kita. Hal ini memungkinkan kita untuk lebih mengidentifikasi pola permintaan (terutama tren dan musiman) dan tingkat permintaan yang dapat digunakan untuk memperkirakan permintaan masa depan. Kebisingan yang diminta adalah konsep yang sama dengan data suhu harian yang melompati. Tidak mengherankan, cara yang paling umum orang menghilangkan kebisingan dari sejarah permintaan adalah dengan menggunakan rata-rata sederhana lebih khusus, rata-rata bergerak. Rata-rata bergerak hanya menggunakan sejumlah periode yang telah ditentukan untuk menghitung rata-rata, dan periode tersebut bergerak seiring berjalannya waktu. Misalnya, jika Im menggunakan moving average 4 bulan, dan hari ini tanggal 1 Mei Im menggunakan rata-rata permintaan yang terjadi pada bulan Januari, Februari, Maret, dan April. Pada tanggal 1 Juni, saya akan menggunakan permintaan dari bulan Februari, Maret, April, dan Mei. Rata-rata bergerak tertimbang. Bila menggunakan rata-rata, kami menerapkan kepentingan (bobot) yang sama untuk setiap nilai dalam dataset. Dalam rata-rata pergerakan 4 bulan, setiap bulan mewakili 25 dari rata-rata bergerak. Bila menggunakan sejarah permintaan untuk memproyeksikan permintaan masa depan (dan terutama tren masa depan), logis untuk sampai pada kesimpulan bahwa Anda ingin sejarah yang lebih baru memiliki dampak lebih besar pada perkiraan Anda. Kita dapat menyesuaikan perhitungan rata-rata bergerak kita untuk menerapkan berbagai bobot pada setiap periode untuk mendapatkan hasil yang diinginkan. Kami mengungkapkan bobot ini sebagai persentase, dan total semua bobot untuk semua periode harus bertambah hingga 100. Oleh karena itu, jika kita memutuskan bahwa kita ingin menerapkan 35 sebagai bobot untuk periode terdekat dalam rata-rata pergerakan tertimbang 4 bulan kita, kita dapat Kurangi 35 dari 100 untuk menemukan bahwa kita memiliki sisa 65 untuk membagi selama 3 periode lainnya. Misalnya, kita bisa berakhir dengan bobot masing-masing 15, 20, 30, dan 35 selama 4 bulan (15 20 30 35 100). Pemulusan eksponensial Jika kita kembali pada konsep penerapan bobot sampai periode terakhir (seperti 35 pada contoh sebelumnya) dan menyebarkan bobot yang tersisa (dihitung dengan mengurangkan berat periode terakhir 35 dari 100 menjadi 65), kita memiliki Blok bangunan dasar untuk perhitungan smoothing eksponensial kami. Pengendalian masukan perhitungan smoothing eksponensial dikenal sebagai faktor pemulusan (juga disebut konstanta pemulusan). Ini pada dasarnya mewakili bobot yang diterapkan pada periode permintaan terakhir. Jadi, di mana kita menggunakan 35 sebagai pembobotan untuk periode terbaru dalam perhitungan rata-rata bergerak tertimbang, kita juga dapat memilih untuk menggunakan 35 sebagai faktor penghalusan dalam perhitungan perataan eksponensial untuk mendapatkan efek yang serupa. Perbedaan dengan perhitungan smoothing eksponensial adalah bahwa alih-alih kita juga harus mengetahui berapa banyak bobot yang harus diterapkan pada setiap periode sebelumnya, faktor pemulusan digunakan untuk melakukannya secara otomatis. Jadi inilah bagian eksponensialnya. Jika kita menggunakan 35 sebagai faktor penghalusan, bobot periode permintaan terakhir akan menjadi 35. Bobot periode permintaan terakhir berikutnya (periode sebelum yang paling baru) akan menjadi 65 dari 35 (65 berasal dari pengurangan 35 dari 100). Ini setara dengan 22,75 bobot untuk periode itu jika Anda melakukan matematika. Permintaan periode paling akhir berikutnya adalah 65 dari 65 dari 35, yang setara dengan 14,79. Periode sebelum itu akan tertimbang 65 dari 65 65 dari 35, yang setara dengan 9,61, dan seterusnya. Dan ini berlanjut kembali sepanjang periode sebelumnya sampai kembali ke awal waktu (atau titik di mana Anda mulai menggunakan smoothing eksponensial untuk item tertentu). Anda mungkin berpikir itu terlihat seperti keseluruhan matematika. Tapi keindahan perhitungan smoothing eksponensial adalah bahwa daripada harus menghitung ulang terhadap setiap periode sebelumnya setiap kali Anda mendapatkan permintaan periode baru, Anda cukup menggunakan keluaran penghitungan eksponensial dari periode sebelumnya untuk mewakili semua periode sebelumnya. Apakah Anda bingung ini akan lebih masuk akal saat kita melihat perhitungan sebenarnya Biasanya kita mengacu pada output perhitungan smoothing eksponensial seperti ramalan periode berikutnya. Pada kenyataannya, perkiraan akhir memerlukan sedikit kerja lebih banyak, namun untuk keperluan perhitungan khusus ini, kami akan menyebutnya sebagai ramalan. Perhitungan smoothing eksponensial adalah sebagai berikut: Periode permintaan terakhir dikalikan dengan faktor penghalusan. PLUS Prakiraan periode terbaru dikalikan dengan (satu minus faktor pemulusan). D periode terakhir meminta S faktor penghalusan diwakili dalam bentuk desimal (jadi 35 akan ditunjukkan sebagai 0,35). F perkiraan periode terbaru (output dari penghitungan smoothing dari periode sebelumnya). ATAU (dengan mengasumsikan faktor pemulusan 0,35) (D 0.35) (F 0.65) Itu tidak akan jauh lebih sederhana dari itu. Seperti yang Anda lihat, semua yang kita butuhkan untuk input data di sini adalah periode permintaan terakhir dan perkiraan periode terbaru. Kami menerapkan faktor pemulusan (pembobotan) ke periode paling akhir dengan permintaan yang sama seperti dalam perhitungan rata-rata bergerak tertimbang. Kami kemudian menerapkan pembobotan yang tersisa (1 dikurangi faktor pemulusan) ke perkiraan periode terbaru. Karena ramalan periode paling baru dibuat berdasarkan perkiraan periode sebelumnya dan perkiraan periode sebelumnya, yang didasarkan pada permintaan untuk periode sebelumnya dan perkiraan untuk periode sebelumnya, yang didasarkan pada permintaan untuk periode sebelumnya Itu dan ramalan untuk periode sebelumnya, yang didasarkan pada periode sebelum itu. Nah, Anda bisa melihat bagaimana semua permintaan periode sebelumnya terwakili dalam perhitungan tanpa benar-benar mundur dan menghitung ulang apapun. Dan itulah yang mendorong popularitas awal eksponensial smoothing. Itu bukan karena melakukan pekerjaan smoothing yang lebih baik daripada rata-rata bergerak tertimbang, karena lebih mudah untuk menghitung dalam program komputer. Dan, karena Anda tidak perlu memikirkan berapa bobot yang harus diberikan pada periode sebelumnya atau berapa banyak periode sebelumnya yang digunakan, seperti yang akan Anda lakukan pada rata-rata pergerakan tertimbang. Dan, karena kedengarannya lebih dingin dari rata-rata bergerak tertimbang. Sebenarnya, dapat dikatakan bahwa rata-rata bergerak tertimbang memberikan fleksibilitas lebih besar karena Anda memiliki kontrol lebih terhadap pembobotan periode sebelumnya. Kenyataannya adalah salah satu dari ini dapat memberikan hasil yang terhormat, jadi mengapa tidak pergi dengan suara lebih mudah dan lebih dingin. Exponential Smoothing di Excel Mari kita lihat bagaimana ini benar-benar terlihat dalam spreadsheet dengan data sebenarnya. Salin Hak Cipta Konten pada InventoryOps dilindungi hak cipta dan tidak tersedia untuk republikasi. Pada Gambar 1A, kita memiliki spreadsheet Excel dengan permintaan 11 minggu, dan perkiraan merapikan secara eksponensial dihitung dari permintaan itu. Ive menggunakan faktor pemulusan 25 (0,25 di sel C1). Sel aktif saat ini adalah Cell M4 yang berisi ramalan untuk minggu 12. Anda bisa lihat di formula bar, rumusnya adalah (L3C1) (L4 (1-C1)). Jadi satu-satunya masukan langsung untuk perhitungan ini adalah permintaan periode sebelumnya (Cell L3), perkiraan periode sebelumnya (Cell L4), dan faktor pemulusan (Cell C1, yang ditunjukkan sebagai referensi sel absolut C1). Saat kita memulai perhitungan penghalusan eksponensial, kita perlu menambahkan nilai ramalan 1 secara manual. Jadi di Cell B4, bukan formula, kami hanya mengetik permintaan dari periode yang sama seperti perkiraan. Di Cell C4 kita memiliki perhitungan smoothing eksponensial 1 kita (B3C1) (B4 (1-C1)). Kita kemudian bisa menyalin Cell C4 dan menempelkannya ke Sel D4 sampai M4 untuk mengisi sisa sel perkiraan kami. Sekarang Anda bisa klik dua kali pada sel perkiraan mana pun untuk melihatnya didasarkan pada ramalan periode sebelumnya dan periode sebelumnya menuntut sel. Jadi setiap perhitungan smoothing eksponensial selanjutnya mewarisi output perhitungan smoothing eksponensial sebelumnya. Thats bagaimana setiap periode sebelumnya permintaan diwakili dalam perhitungan periode terbaru meskipun perhitungan itu tidak secara langsung referensi periode sebelumnya. Jika ingin kemewahan, Anda bisa menggunakan fungsi pendahuluan Excels. Untuk melakukan ini, klik pada Cell M4, lalu pada bar alat pita (Excel 2007 atau 2010) klik tab Rumus, lalu klik Trace Precedents. Ini akan menarik garis konektor ke tingkat pertama preseden, tapi jika Anda terus mengklik Trace Preseden, itu akan menarik garis konektor ke semua periode sebelumnya untuk menunjukkan kepada Anda hubungan yang diwariskan. Sekarang mari kita lihat apa yang dilakukan smoothing eksponensial untuk kita. Gambar 1B menunjukkan bagan garis dari permintaan dan perkiraan kami. Kasus Anda melihat bagaimana perkiraan merapikan secara eksponensial menghilangkan sebagian besar jaggedness (lompatan sekitar) dari permintaan mingguan, namun tetap berhasil mengikuti apa yang tampaknya merupakan tren permintaan yang meningkat. Anda juga akan melihat bahwa garis perkiraan merapikan cenderung lebih rendah dari garis permintaan. Ini dikenal sebagai trend lag dan merupakan efek samping dari proses smoothing. Kapan pun Anda menggunakan smoothing saat tren hadir, ramalan Anda akan tertinggal dari tren. Hal ini berlaku untuk teknik pemulusan. Sebenarnya, jika kami melanjutkan spreadsheet ini dan mulai memasukkan jumlah permintaan yang lebih rendah (membuat tren menurun), Anda akan melihat garis permintaan turun, dan garis tren bergerak di atasnya sebelum mulai mengikuti tren penurunan. Itulah mengapa saya sebelumnya menyebutkan output dari perhitungan smoothing eksponensial yang kita sebut ramalan, masih memerlukan beberapa pekerjaan lagi. Ada lebih banyak peramalan daripada hanya meratakan benjolan permintaan. Kita perlu melakukan penyesuaian tambahan untuk hal-hal seperti tren lag, seasonality, event yang diketahui yang mungkin mempengaruhi permintaan, dll. Tapi semua itu berada di luar cakupan artikel ini. Anda mungkin juga akan mengalami istilah seperti perataan eksponensial ganda dan pemulusan tiga eksponensial. Istilah ini agak menyesatkan karena Anda tidak merapikan permintaan berkali-kali (Anda bisa jika Anda mau, tapi bukan itu masalahnya di sini). Istilah ini mewakili penggunaan smoothing eksponensial pada elemen tambahan ramalan. Jadi dengan pemulusan eksponensial sederhana, Anda merapikan permintaan dasar, namun dengan pemulusan eksponensial ganda, Anda merapikan permintaan dasar ditambah trennya, dan dengan pemulusan tiga eksponensial Anda merapikan permintaan dasar ditambah tren plus musiman. Pertanyaan lain yang paling sering diajukan tentang pemulusan eksponensial adalah dari mana saya mendapatkan faktor pemulusan saya Tidak ada jawaban ajaib di sini, Anda perlu menguji berbagai faktor penghalusan dengan data permintaan Anda untuk melihat hasil terbaik Anda. Ada perhitungan yang bisa mengatur (dan mengubah) faktor smoothing secara otomatis. Ini jatuh di bawah istilah perataan adaptif, tapi Anda harus berhati-hati dengan mereka. Tidak ada jawaban yang sempurna dan Anda seharusnya tidak membabi buta menerapkan perhitungan tanpa pengujian menyeluruh dan mengembangkan pemahaman menyeluruh tentang perhitungan yang dilakukannya. Anda juga harus menjalankan skenario apa-jika melihat bagaimana perhitungan ini bereaksi terhadap permintaan perubahan yang mungkin saat ini tidak ada dalam data permintaan yang Anda gunakan untuk pengujian. Contoh data yang saya gunakan sebelumnya adalah contoh yang sangat bagus dari situasi di mana Anda benar-benar perlu menguji beberapa skenario lainnya. Contoh data tertentu menunjukkan kecenderungan kenaikan yang agak konsisten. Banyak perusahaan besar dengan perangkat lunak peramalan yang sangat mahal mendapat masalah besar dalam masa lalu yang tidak begitu jauh ketika pengaturan perangkat lunak mereka yang di-tweak untuk ekonomi yang sedang tumbuh tidak akan membaik saat ekonomi mulai stagnan atau menyusut. Hal seperti ini terjadi saat Anda tidak mengerti apa perhitungan (software) Anda sebenarnya. Jika mereka memahami sistem peramalan mereka, mereka pasti tahu bahwa mereka perlu terjun dan mengubah sesuatu saat terjadi perubahan dramatis mendadak pada bisnis mereka. Jadi begitulah dasar-dasar smoothing eksponensial dijelaskan. Ingin tahu lebih banyak tentang penggunaan smoothing eksponensial dalam perkiraan yang sebenarnya, lihat buku saya yang Dijelaskan Manajemen Inventaris. Salin Hak Cipta Konten pada InventoryOps dilindungi hak cipta dan tidak tersedia untuk republikasi. Dave Piasecki. Adalah owneroperator dari Inventory Operations Consulting LLC. Sebuah perusahaan konsultan yang menyediakan layanan yang berkaitan dengan manajemen persediaan, penanganan material, dan operasi gudang. Dia memiliki pengalaman lebih dari 25 tahun dalam manajemen operasi dan dapat dijangkau melalui situs webnya (inventaris), di mana dia menyimpan informasi tambahan yang relevan. Bisnisku Vs Vs. Rata-rata Moving Exponential Moving averages lebih banyak daripada mempelajari urutan angka dalam urutan yang berurutan. Praktisi awal analisis deret waktu sebenarnya lebih memperhatikan nomor seri waktu individu daripada interpolasi data tersebut. Interpolasi. Dalam bentuk teori dan analisis probabilitas, datang kemudian, karena pola dikembangkan dan korelasi ditemukan. Setelah dipahami, berbagai kurva dan garis berbentuk digambar sepanjang deret waktu dalam usaha untuk memprediksi kemana titik-titik data bisa pergi. Ini sekarang dianggap sebagai metode dasar yang saat ini digunakan oleh pedagang analisis teknis. Analisis Charting dapat ditelusuri kembali ke Jepang Abad 18, namun bagaimana dan kapan moving averages pertama kali diterapkan pada harga pasar tetap menjadi misteri. Secara umum dipahami bahwa simple moving averages (SMA) digunakan jauh sebelum eksponensial moving averages (EMA), karena EMA dibangun pada kerangka SMA dan rangkaian SMA lebih mudah dipahami untuk merencanakan dan melacak tujuan. (Rata-rata pergerakan sederhana menjadi metode yang disukai untuk melacak harga pasar karena cepat menghitung dan mudah dimengerti. Praktisi pasar awal beroperasi tanpa menggunakan metrik grafik yang canggih yang digunakan saat ini, jadi mereka mengandalkan harga pasar sebagai satu-satunya panduan mereka. Mereka menghitung harga pasar dengan tangan, dan menggambarkan harga tersebut untuk menunjukkan tren dan arah pasar. Proses ini cukup membosankan, namun terbukti cukup menguntungkan dengan konfirmasi studi lebih lanjut. Untuk menghitung rata-rata pergerakan sederhana 10 hari, cukup tambahkan harga penutupan dalam 10 hari terakhir dan bagi dengan 10. Rata-rata pergerakan 20 hari dihitung dengan menambahkan harga penutupan selama periode 20 hari dan bagi dengan 20, dan Begitu seterusnya Rumus ini tidak hanya berdasarkan harga penutupan, namun produk tersebut adalah harga rata-rata - subset. Moving averages disebut bergerak karena kelompok harga yang digunakan dalam perhitungan bergerak sesuai dengan poin pada grafik. Ini berarti hari tua dijatuhkan pada hari penutupan harga baru, jadi perhitungan baru selalu diperlukan sesuai dengan kerangka waktu rata-rata yang digunakan. Jadi, rata-rata 10 hari dihitung ulang dengan menambahkan hari baru dan menjatuhkan hari ke 10, dan hari kesembilan dijatuhkan pada hari kedua. Exponential Moving Average (EMA) Rata-rata pergerakan eksponensial telah disempurnakan dan lebih umum digunakan sejak tahun 1960an, berkat eksperimen praktisi sebelumnya dengan komputer. EMA baru akan lebih fokus pada harga terbaru daripada serangkaian data yang panjang, seperti rata-rata pergerakan sederhana yang dibutuhkan. EMA saat ini ((Harga (sekarang) - EMA sebelumnya)) X multiplier) EMA sebelumnya. Faktor yang paling penting adalah konstanta smoothing yang 2 (1N) dimana N jumlah hari. EMA 2 hari 10 hari (101) 18.8 Ini berarti bobot EMA 10 periode dengan harga paling akhir 18,8, EMA 9,52 dan 50 hari EMA 3,92 berat pada hari terakhir. EMA bekerja dengan menimbang perbedaan antara harga periode sekarang dan EMA sebelumnya, dan menambahkan hasilnya ke EMA sebelumnya. Periode yang lebih pendek, bobot yang lebih banyak diterapkan pada harga terbaru. Fitting Lines Dengan perhitungan ini, poin diplot, menunjukkan garis pas. Garis pas di atas atau di bawah harga pasar menandakan bahwa semua moving averages adalah indikator lagging. Dan digunakan terutama untuk mengikuti tren. Mereka tidak bekerja dengan baik dengan berbagai pasar dan periode kemacetan karena garis pas gagal menunjukkan tren karena kurangnya harga tinggi yang terlihat tinggi atau posisi terendah lebih rendah. Plus, garis pas cenderung tetap konstan tanpa petunjuk arah. Sebuah garis pas naik di bawah pasar menandakan panjang, sementara garis pas jatuh di atas pasar menandakan pendek. (Untuk panduan lengkap, baca Tutorial Rata-Rata Bergerak kami). Tujuan penggunaan rata-rata pergerakan sederhana adalah dengan melihat dan mengukur tren dengan menghaluskan data dengan menggunakan beberapa kelompok harga. Tren terlihat dan diekstrapolasikan ke dalam ramalan. Anggapannya adalah bahwa pergerakan tren sebelumnya akan berlanjut. Untuk rata-rata bergerak sederhana, tren jangka panjang dapat ditemukan dan diikuti jauh lebih mudah daripada EMA, dengan asumsi yang masuk akal bahwa garis pas akan bertahan lebih kuat daripada garis EMA karena fokus lebih lama pada harga rata-rata. EMA digunakan untuk menangkap pergerakan tren yang lebih pendek, karena fokus pada harga terbaru. Dengan metode ini, EMA seharusnya mengurangi kelambatan dalam moving average sederhana sehingga garis pas akan memeluk harga lebih dekat daripada rata-rata pergerakan sederhana. Masalah dengan EMA adalah ini: Rawan terhadap jeda harga, terutama pada pasar yang cepat dan periode volatilitas. EMA bekerja dengan baik sampai harga menembus garis pas. Selama pasar volatilitas yang lebih tinggi, Anda dapat mempertimbangkan untuk meningkatkan panjang rata-rata bergerak. Seseorang bahkan dapat beralih dari EMA ke SMA, karena SMA memperlancar data jauh lebih baik daripada EMA karena fokusnya pada sarana jangka panjang. Indikator Trend-Following Sebagai indikator lagging, moving averages berfungsi juga sebagai support dan resistance lines. Jika harga turun di bawah garis pas 10 hari dalam tren naik, kemungkinan besar tren kenaikan mungkin akan berkurang, atau setidaknya pasar mungkin berkonsolidasi. Jika harga menembus di atas rata-rata pergerakan 10 hari dalam tren turun. Tren bisa berkurang atau mengkonsolidasikan. Dalam kasus ini, gunakan rata-rata pergerakan 10 dan 20 hari bersama-sama, dan tunggu baris 10 hari untuk menyeberang di atas atau di bawah garis 20 hari. Ini menentukan arah jangka pendek berikutnya untuk harga. Untuk jangka waktu yang lebih lama, perhatikan rata-rata bergerak 100 dan 200 hari untuk arah jangka panjang. Misalnya, menggunakan rata-rata bergerak 100 dan 200 hari, jika rata-rata pergerakan 100 hari melintasi rata-rata 200 hari, yang disebut salib kematian. Dan sangat bearish untuk harga. Rata-rata pergerakan 100 hari yang melintasi di atas rata-rata pergerakan 200 hari disebut salib emas. Dan sangat bullish untuk harga. Tidak masalah apakah SMA atau EMA digunakan, karena keduanya merupakan indikator tren berikut. Yang hanya dalam jangka pendek bahwa SMA memiliki sedikit penyimpangan dari rekannya, yaitu EMA. Kesimpulan Moving averages adalah dasar bagan dan analisis deret waktu. Rata-rata bergerak sederhana dan rata-rata pergerakan eksponensial yang lebih kompleks membantu memvisualisasikan tren dengan meratakan pergerakan harga. Analisis teknis kadang-kadang disebut sebagai seni dan bukan sains, yang keduanya butuh waktu bertahun-tahun untuk dikuasai. (Pelajari lebih lanjut dalam Tutorial Analisis Teknis kami). Ukuran hubungan antara perubahan kuantitas yang diminta dari barang tertentu dan perubahan harga. Harga. Total nilai pasar dolar dari seluruh saham perusahaan yang beredar. Kapitalisasi pasar dihitung dengan cara mengalikan. Frexit pendek untuk quotFrench exitquot adalah spinoff Prancis dari istilah Brexit, yang muncul saat Inggris memilih. Perintah ditempatkan dengan broker yang menggabungkan fitur stop order dengan pesanan limit. Perintah stop-limit akan. Ronde pembiayaan dimana investor membeli saham dari perusahaan dengan valuasi lebih rendah daripada valuasi yang ditempatkan pada. Teori ekonomi tentang pengeluaran total dalam perekonomian dan pengaruhnya terhadap output dan inflasi. Ekonomi Keynesian dikembangkan.
No comments:
Post a Comment